Unconditional or Conditional Logistic Regression Model for Age-Matched Case–Control Data?
نویسندگان
چکیده
Matching on demographic variables is commonly used in case-control studies to adjust for confounding at the design stage. There is a presumption that matched data need to be analyzed by matched methods. Conditional logistic regression has become a standard for matched case-control data to tackle the sparse data problem. The sparse data problem, however, may not be a concern for loose-matching data when the matching between cases and controls is not unique, and one case can be matched to other controls without substantially changing the association. Data matched on a few demographic variables are clearly loose-matching data, and we hypothesize that unconditional logistic regression is a proper method to perform. To address the hypothesis, we compare unconditional and conditional logistic regression models by precision in estimates and hypothesis testing using simulated matched case-control data. Our results support our hypothesis; however, the unconditional model is not as robust as the conditional model to the matching distortion that the matching process not only makes cases and controls similar for matching variables but also for the exposure status. When the study design involves other complex features or the computational burden is high, matching in loose-matching data can be ignored for negligible loss in testing and estimation if the distributions of matching variables are not extremely different between cases and controls.
منابع مشابه
A SAS Macro to Analyze Data From a Matched or Finely Stratified Case-Control Design
A matched case-control design is a common approach used to assess diseaseexposure relationships, and is often a more efficient method than an unmatched design. However, for the valid analysis of such an approach, a modeling technique that incorporates the matched nature of the data is needed. This prohibits the use of a standard unconditional logistic regression analysis generally available in ...
متن کاملبرآورد اثر متقابل ژن - محیط در سرطان پستان با مطالعات مورد - شاهد و فقط مورد
Background and Aim: Limitations of the traditional methods for assessing G*E interaction- including case-control studies- led to development of several non-traditional approaches. This study aims to assess the interaction between the genetic background (history of breast cancer in first degree relatives) and environmental influences (reproductive/menstrual factors) in patients with breast cance...
متن کاملTruncated logistic regression for matched case-control studies using data from vision screening for school children
Matching is a methodology applied at the beginning of a study that compares two or more groups. The main advantage for matching over random non-matching sampling is that matched study designs can often lead to a more statistically efficient analysis. The most commonly used methods to analyse the matched pair dataset are logistic regression models. The main advantage of using logistic regression...
متن کاملMethodologic considerations in the design and analysis of nested case-control studies: association between cytokines and postoperative delirium
BACKGROUND The nested case-control study (NCC) design within a prospective cohort study is used when outcome data are available for all subjects, but the exposure of interest has not been collected, and is difficult or prohibitively expensive to obtain for all subjects. A NCC analysis with good matching procedures yields estimates that are as efficient and unbiased as estimates from the full co...
متن کاملFitting general relative risk models for survival time and matched case-control analysis.
Cox proportional hazards regression analysis of survival data and conditional logistic regression analysis of matched case-control data are methods that are widely used by epidemiologists. Standard statistical software packages accommodate only log-linear model forms, which imply exponential exposure-response functions and multiplicative interactions. In this paper, the authors describe methods...
متن کامل